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This paper examines the three-dimensional wave packets which are generated by an 
initially localized pulse disturbance in an incompressible parallel flow and described 
by a double Fourier integral in the wavenumber space. It aims to  clear up some 
confusion arising from the asymptotic evaluation of this integral by the method of 
steepest descent. In  this asymptotic analysis, the calculation of the eigenvalues can 
be facilitated by making use of the Squire transformation. It is demonstrated that 
the use of the Squire transformation introduces branch points in the saddle-point 
equation that links the physical coordinates to the saddle-point value, regardless of 
whether the flow is viscous or inviscid. It is shown that the correct branch should be 
chosen according to  the principle of analytic continuation. The saddle-point values 
for the three-dimensional problem should be considered to be the analytic 
continuation of those for the two-dimensional case where the saddle-point values can 
be uniquely determined. The three-dimensional wave packets in an inviscid wake flow 
are examined ; their behaviour at large time is calculated asymptotically by the 
method of steepest descent in terms of the two-dimensional eigenvalue relation. 

1. Introduction 
Laminar flows break down into turbulence owing to the growth of wavy 

disturbances excited by external sources. The classic linear stability theory analyses 
eigenmodes in a flow system, and determines whether the flow is stable or unstable 
for some particular modes (e.g. Lin 1955; Betchov & Criminale 1967; Drazin & Reid 
1981). However, it is currently known that it is more relevant to model 
laminar-turbulence transitions in real flows by studying the evolution of wave 
packcts generated by isolated pulse disturbances (see, for example, Benjamin 1961 ; 
Criminale & Kovasznay 1962; Betchov & Szewczyk 1963; Gaster & Davey 1968; 
Gaster & Grant 1975). This is because natural transition usually involves wave 
modes with a broad range of frequencies and wavelengths. When these modes 
develop in an unstable flow, they form wave packets, which in turn evolve into 
turbulent spots a t  the beginning of the transition process. A pulse-type disturbance 
has a flat spectrum, so that all possible modes can be excited by applying such a 
disturbance to a flow. Through selective amplification, those modes that are unstable 
grow with time. Close to transition, it is the rapid exponential growth of the unstable 
modes, rather than the detailed nature of the initial excitation, that is the dominant 
feature in the flow. Thus the wave packets generated by idealized pulse excitations 
can very satisfactorily model those occurring in natural situations which are 
produced by disturbances such as free-stream turbulence. 

A wave packet generated by an initially localized disturbance in an incompressible 
parallel flow can be represented, in linear theory, by inverse Fourier transforms in 
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wavenumber space, containing contributions from both the continuous spectrum 
and from all the discrete eigenmodes. Because of thc exponential growth in the linear 
region of their development, the unstable waves are increasingly dominated by the 
fastest growing mode as they evolve with time. The wave packet formed by this 
dominant mode can be calculated by making use of the method of steepest descent 
with the dominant contribution given by saddle points (Gaster 1 9 6 8 ~ ) .  The 
determination of saddle points is accordingly a matter of calculating eigenvalues and 
their derivatives. It is well known that the eigenvalue relation for a three- 
dimensional problem, whether viscous or inviscid, can be connected to a 
corresponding two-dimensional one by the Squire transformation. This trans- 
formation significantly reduces the burden of calculation, as eigenvalues arc only 
then required for a two-dimensional problem. However, it creates some difficulties 
that must be carefully dealt with, especially when it is used in the asymptotic 
analysis. Because the transformation involves squared functions, it renders the 
wavenumbers double-valued, and presents the problem of choosing the correct 
branch for them. This has caused some difficulties in Gaster & Davey’s study (1968) 
of the asymptotic behaviour of the wave packet generated by a pulse disturbance in 
an inviscid wake flow. They found a spurious discontinuity which they conjectured 
might be the first region to break down into turbulence. As a corollary of this they 
suggested that inviscid theory might not be sufficient to model the real viscous flow 
in some cases. To clarify this, we will examine in detail the singularities introduced 
by using the Squire transformation. It will be shown that the difficulties Gaster & 
Davey encountered are entirely due to the branch cut introduced by the Squire 
transformation and are not related to any physical phenomena. They can all be 
overcome by establishing a criterion for the choice of the relevant branch according 
to the principle of analytic continuation. We will show that this criterion can be 
derived from the fact that the solution of the three-dimensional problem is the 
analytic continuation of the equivalent two-dimensional problem. Any choice of the 
branch in the asymptotic solution must ensure that the chosen branch contains the 
relevant two-dimensional solution. As an example, the parallel wake flow discussed 
by Gaster & Davey (1968) will be examined. For this wake flow the unstable waves 
are convective in nature ; they propagate with their group velocity downstream in 
the mean flow direction with increasing amplitudes. The three-dimensional wave 
packet generated by a pulse excitation occupies an almost elliptic region with a 
slightly concave forward face. 

2. Formulation of the problem 
Consider an incompressible parallel flow that is perturbed by a small impulsive 

force activated from some initial instant. For the sake of convenience, we assume 
that all variables have been non-dimensionalized. The mean flow is assumed to be in 
the positive x-direction of a Cartesian coordinate system (2, y, x ) ,  with a non- 
dimensional velocity profile O(y), and the external disturbance force to be applied to 
the flow system acts in the direction perpendicular to the mean flow. By linearizing 
the Navier-Stokes equation, a set of linear partial differential equations for the 
perturbation velocities (ii, $, 2;) and pressure 3; can be derived (Lin 1955). Eliminating 
6,  Zi, and 3; from these equations, a single partial differential equation for 6 can be 
derived, whose coefficients are functions of y only, which thus can be conveniently 
solved by using Fourier transforms. Since the localized forcing is switched on a t  some 
initial instant, t = 0 say, and the disturbances produced by the forcing propagate 
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through the flow a t  finite speeds, the disturbances can only travel a finite distance 
from the forcing point in any finite time period. Thus, the perturbation velocity 
i(x, y, z ,  t )  is always zcro for 1x1 + co and 121 -+ co at any finite time t. The Fourier 
transforms in the x- and z-directions then exist in the conventional sense, which 
means that, if a and b are the wavenumbers in the x- and z-directions respectively, 
the inverse transformations from the wavenumber space (a, b )  to the physical space 
(x, z) are ordinary real variable transformations. To perform the Fourier transform 
with respect to time t ,  i t  is necessary to assign an imaginary part to the frequency 
parameter 6 such that this imaginary part is larger than the faster growth rate of the 
disturbances, which offsets the growth of instability waves a t  large time and ensures 
the convergence of the Fourier transform from the time to the frequency domain. 
The use of Fourier transformations reduces the partial differential equation to an 
ordinary differential equation for v( y, a, 6, &), which is to be solved subject to typical 
boundary conditions 

av 
aY 

v = - = O  as y++co. 

The solution v can be found as the ratio of a function F and the Wronskian A of the 
Orr-Sommerfeld equation calculated a t  y = 0, i.c. 

The definition of the function F is omitted here since it is not of concern. Then the 
velocity 4 in the physical space (z, y, z ,  t )  is given by the inverse Fourier transform, 

where the wavenumber integrals are along the real axes in the complex a- and b- 
planes and the frequency inversion is performed along a horizontal line from - co to  
+a in the complex &plane above all the singularities of the integrand. The 3- 
integral can be performed by making use of the residue theorem. For t < 0,  the 
integration contour must be closed by a semi-circle in the upper half of the G-plane 
to allow the integral to  converge. Since there are no singularities above the 
integration path, the solution for t < 0 is then identically zero, a result in accordance 
with the principle of causality. On the other hand, for t > 0,  convergence requires the 
contour to  be closed in the lower half of the G-plane so that contributions come from 
all the singularities (from the dispersion relation) and branch cuts. The former are 
usually poles and yield discrete modes while the latter correspond to  continuous 
spectra. 

3. The saddle-point method 
For the long-term behaviour of the disturbance, however, the fastest component 

will be dominant and this comes from the discrete eigenmode with the largest 
imaginary part. Thus the asymptotic behaviour of the disturbance velocity 6(x, y, z, t )  
is characterized by a double integral in the wavenumber space, 
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where the complex phase function $(a, 6) is defined as 

1 Z 
$ = i[aT+bi-G(a,b) , (3.2) 

and the integrand has been denoted by g(a, h,  y),  that  is, 

with G(a, b) the most unstable complex eigenfrequency determined by d ( a ,  b ,  (3) = 0. 
As first advocated by Gaster (1968a), the method of steepest dcsccnt can be applied 
to non-conservative wave systems with complex eigenfrequency ;(a, b) such as that 
represented by (3.1). The dominant contributions to the double integral as t + co, 
while x/t and z/t remain constant, are from the saddle points of $ and the 
singularities of g(a, b ,  y).  This results from deforming the original integration paths 
along the real axes onto the steepest descent paths in the complex a- and b-planes. 
In doing so, contributions from the relevant singularities of g(a,b,y) must be 
collected and those from the steepest descent paths come predominantly from the 
saddle points. The pole contributions can be analysed by the residue theorem, which 
requires the determination of the eigenfunctions of the governing equation. For the 
asymptotic analysis with t + co, we will concentzte on the saddle-point contribution. 

For given (x/t,z/t) and Reynolds number Re, the saddle point is given by the 
vanishing of the gradient of the complex phase function $(u,b), namely, 
a$(a, b)/aa = 0 and a$(a, b)/ab = 0. By making use of the definition (3.2), this leads 
to 

a2(a,b)  x a3(a,b)  z 
(3.3) 

Following Gaster (1968 a) ,  the leading-order contribution to the double integral (3.1) 
can be found as 

- - ~- - - -  
aa t ’  ab  t ‘  

(3.4) 

provided that the Jacobian determinant of the second derivatives, defined by 

az$ a 2 $  

a2e az$ 

- -  
a 2 3 a 2 6  a 2 6  2 

(3.5) - - aa2 aaab  
i3a2 ab2 +(=) ’ 

J =  
~- 
aaab ab2 

does not vanish. All the quantities a ,  b, G(u ,  b) and the derivatives of &(a, b )  in (3.4) 
and (3.5) take their values a t  the saddle point, determined by (3.3). In  the case where 
the Jacobian determinant (3.5) does vanish, the leading-order term of the asymptotic 
expansion will be of order l / t Y  with y < 1.  The values of y depend on how many terms 
among a2$/aa2, a2$/aaab and a2$/ab2 are zero. 

The result (3.4) describes the development of wave packets. At any given point 
(.It, zit) in the physical space, if the real part of the complex phase function y? is 
positive, the disturbances grow with time ; otherwise the waves decay as they travel 
in the flow and the flow eventually returns to its undisturbed state. Note that 
keeping the pair (x/t, z / t )  constant corresponds to  an observation position moving 
with constant velocity 

{;, g}, 



Three-dimensional wave packets in parallel jlows 577 

where the last step follows from the use of (3.3). Thus the result (3.4) actually 
describes the waves in the frame of reference of an observer moving with the group 
velocity of the waves. This moving observer sees the waves growing or decaying 
according to whether the real part of $ is positive or negative. Of course, if the 
observation position is a t  a fixed point ( x , y , z ) ,  the characteristics of the waves 
depend on whether the flow is convectively or globally unstable. 

The evaluation of the result (3.4) (or (3.1) by numerical summation) requires the 
values of the eigenfrequency G(a, b )  for the three-dimensional problem. The 
calculation of G(a ,  b )  for the given fie can be greatly facilitated by making use of the 
Squire transformation, 

I a2 = a2+b2 

where u, w and Re are respectively the wavenumber, frequency and Reynolds 
number in the corresponding two-dimensional problem. Thus the evaluation of G(a, 
b )  for the different Be is reduced to the evaluation of w(u, Re), which is determined 
by the Orr-Sommerfeld equation. 

4. Singular points introduced by the Squire transformation 
To demonstrate that  the Squire transformation introduces singularities, we will 

discuss the viscous problem in this section. By making use of the two-dimensional 
eigenfrequency w ( a ,  Re), the saddle-point equations (3.3) can be converted through 
the transformation (3.6) to  

On eliminating a and b from these equations, a single equation relating the physical 
parameters ( x / t ,  z / t )  to the two-dimensional wavenumber a can be formulated, 

Thus, for a given set of ( x / t ,  z / t ) ,  a can be found from this equation and the saddle- 
point value for (a,  b )  can then be obtained from equation (4.1). I n  doing so, several 
points need to be cleared up. 

First, it  can be seen that, when 

(4.3) 

the equation (4.1) does not yield solutions for (a ,  b) .  However, this occurs at most a t  
isolated points in the a-plane, because the condition (4.3) implies that 
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which is true only if the complex wave speed c = o/a is a function of d i e  alone. This 
condition is not generally satisfied by solutions of the Orr-Sommerfeld equation 
which has cocfficients involving both a2 and crRe so that c is usually a function of 
both. In  any case, the existcncc of such isolated points is irrelevant to the calculation 
of the saddle points since they do not satisfy the equation (4.2), unless the imaginary 
parts of both aw/aa and w / u  + (Rela) a@Re are zero. 

In our calculations we have not noticed any difficulties due to the condition (4.3), 
because there are no values of a that satisfy both (4.3) and (4.2) in our problem. 
However, it is theoretically possible for this to occur and for this reason, we will 
briefly discuss a way of overcoming such difficulties. If the original saddle-point 
equations (3.3) are used to calculate (a ,  b )  directly from the three-dimensional 
eigenfrequency G(u ,b ) ,  thcrc are no such difficulties. Thus it is clear that these 
singular points occur entirely as a result of using the Squire transformation. From 
the numerical calculation point of view, the existence of these isolated points will not 
affect the calculation of the wave packets since the Jacobian determinant (3.5) under 
the condition (4.3) is in general not equal to zero and so the result (3.4) is still the 
leading-order contribution in the asymptotic expansion. Thus, since the difficulties 
are not associated with any physical phenomenon, the values a t  these points can be 
obtained by simply interpolating between the values a t  neighbouring points. 

Second, when calculating the saddle point through (4.2), false solutions may be 
introduced. This is because equation (4.2) is obtained by manipulating (4.1) with its 
second equation squared. If this occurs, the false solutions can be rejected by 
examining equation (4.1). This can be clearly demonstrated by considering the 
special case of z/ t  = 0. In this case, (4.2) yields two saddle points given by 

x w Re aw 
t aa t a a aRe 

- 0 .  - - 0. a. - 

The first is the same as the saddle-point equation for the two-dimensional case 
(Gaster 1968b), while the second one gives a false solution. To show this, we set z/t  
to zero in equation (4.1). The second equation of (4.1) then seems to permit three 
solutions 

(i) a = 0;  

aw w Re aw 

aa a 01 aRe 
(ii) - - 0;  

(iii) b = 0. 

The first choice must be ruled out because the Orr-Sommerfeld equation would only 
have a trivial zero solution. The second choice is not possible because it is exactly the 
condition (4.3) discussed above which is not on the saddle-point trace for this 
problem. Thus the only proper solution is the third one, which can also be readily 
derived by the symmetry of G(a,  b )  in the wavenumber b in both inviscid and viscous 
cases. This solution actually coincides with the saddle-point trace in the two- 
dimensional case, because the first equation in the Squire transformation (3.6) gives 
a = a and the first equation of (4.1) gives x / t  = ao/aa. 

Third, for a given value of x / t  and z / t ,  there may be more than one saddle point. 
If they are inherent for the given problem, they should all be taken into account, 
with the wave packet given by the summation of terms of the form (3.4) over all the 
saddle points. In  the spirit of asymptotic analysis, only the one of these solutions 
that gives the largest amplification is needed. However. the multi-valued a 
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determined by (4.2) may be a result of the squaring of the wavenumbers involved in 
the Squire transformation. If this is the case, the problem of choosing the correct 
Riemann surface when using (4.2) to find the saddle points is entirely mathematical; 
i t  results purely from the use of the Squire transformation and the two-dimensional 
eigenfrequency w ( a ,  Re), regardless of whether the problem is viscous or inviscid. By 
regarding a as a function of x/t+iz/t, it is clear that the correct Riemann surface 
must be chosen in the complex plane x/t+iz/t. To do this, we can use the principle 
of analytic continuation and consider the function a, of complex argument x/t + iz/t, 
to be the analytic continuation from its values on the real axis x/t = 0 in the complex 
(x/t,z/t)-plane. Thus, the criterion for choosing the correct a is to ensure that the 
chosen branch contains the values of a on the axis z/t = 0. This corresponds to  the 
two-dimensional problem where 01 is unambiguously determined by dw/da = x/t as 
a function of x/t (Gastcr 19686). This principle must also be used to determine the 
correct branch for a when it is calculated from (4.1). In fact, as will be shown later 
on, the wave packet solution, (3.4), can be expressed in terms of a and one of many 
expressions involving the wavenumber a. It is thus sufficient to  specify the branch 
for any one of such expressions. 

5. Saddle-point analysis for an inviscid wake flow 

examining the inviscid wake flow with the mean velocity profile given by 
In this section, we demonstrate the use of the analysis in the previous section by 

O(y) = 1 -0.692exp ( -0.693y2), 

the same one examined by Gaster & Davey (1968) for the development of three- 
dimensional wave packets. For inviscid flows, the governing OrrSommerfeld 
equation reduces to the Rayleigh equation, which admits both symmetrical and 
antisymmetrical eigenmodes for the symmetrical mean velocity profile g(y). Among 
these two eigenmodes, the least damped one is symmetrical (Drazin & Howard 1966). 
The calculation of the eigenvalue w can be found in the literature and will not be 
repeated here. The asymptotic evaluation of wave packets also requires the 
derivatives of the eigenvalue w which, in principle, can be obtained by differentiating 
the Rayleigh equation with respect t o  a. This will lead to  higher-order differential 
equations. Thus, it is quite time-consuming to  compute the eigenvalues and their 
derivatives from the basic differential equation even for the two-dimensional inviscid 
case. It is desirable to be able to approximate the eigenvalue relation by simple 
analytic expressions, which is feasible because the dispersion equation defines the 
eigenfrequency as an analytic function of the wavenumber, except at some isolated 
branch points. This was first suggested by Gaster (19686), and later effected by 
Gaster & Jordinson (1975), who utilized the power series representation to 
approximate the eigenvalues in some regions of the wavenumber planes in their 
studies of the Blasius boundary-layer flow. Gaster (1978) has further demonstrated 
that the rate of convergence of the series can be improved by resorting to the 
nonlinear Shanks transformation. An alternative is the adoption of an algebraic 
model expansion for the complex dispersion relation (Craik 1981, 1982). By suitable 
choice of parameters, Craik was able to recover the results in different flows. 

In  this paper the eigenvalue relation is represented by a rational-fraction function 
obtained by the application of the Pad6 approximant method (Baker 1975) to the 
power series representation. Owing to  its ability to map away singularities, the Pad6 
approximant method has been widely used in many subjects, but not previously 
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a, 

FIGURE 1. Contours of complex wave speed c = w / a  in the a-plane with solid curves representing 
the real part and broken curves the imaginary part. 

in stability studies though it was suggested by Gaster (1978) as an alternative scheme 
to improve the convergence of the power series representation. I ts  efficiency and 
advantages over the techniques being currently used have been discussed by Jiang 
(1990) for both inviscid and viscous problems. The Pad6 approximant method 
replaces the power series representation of the function by a ratio of two polynomials 
with its numerator P(a)  being of degree L and denominator &(a) of degree M ,  i.e. 

@(a) = f"L'M1(a)/QIL'MI(a). (5.2) 

The coefficients of the powers in the numerator and the denominator are calculated 
by matching the Taylor series expansion of this fraction with the power series. The 
approximants for L = M a r e  connected to some continued fractions that can improve 
the convergence properties of a power series remarkably. One of them, L = M = 7,  
will be used in the following numerical calculation. 

For inviscid flows, the saddle-point equations (4.1) reduce to 

Combination of these two equations leads to the inviscid version of (4.2), 

(;-i)(;-g)+(;)2 = 0, 

(5.3) 

(5.4) 

which can be used to calculate a for given values of ( x / t , z / t ) .  Then (a ,6)  can be 
determined by (5.3), except a t  some isolated points in the complex a-plane where 

= 0. - dw w 

da a da a 
_ _ _  - 
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FIGURE 2. Contours of the complex wavenumber a in the wave speed c = w / a  plane, where hhe solid 
curves are the real part and the broken curves the imaginary part. 

Singularities occur either a t  a = 0 or when the wave speed e = w / a  has a vanishing 
derivative with respect to a. The former is a trivial case, while the latter has been 
observed to  occur in inviscid two-dimensional flows (Betchov & Criminale 1966, 
Mattingly & Criminale 1972, Gaster & Jordinson 1975). To explore the possibility of 
dclda = 0, contours of c in the complex a-plane are plotted in figure 1. It is obvious 
that there is a t  least one point where the wave speed has a zero derivative, which 
occurs a t  about a = 0.11202+iO.45229. This can also be demonstrated by plotting 
contours of a in the complex c-plane, as presented in figure 2. There is evidently a 
branch point singularity in the c-plane. This singular behaviour of a as a function of 
c can be understood by expanding c(a)  a t  the point where dclda = 0. The leading term 
in the expansion is proportional to the square of a ;  the inverse function a ( c )  a t  the 
corresponding point is then a square root function of c. As analysed in the previous 
section, these singular points do not, in general, coincide with the saddle point, since 
they do not satisfy the saddle-point equation which requires 

Separating the real and imaginary parts of the saddle-point equation (5.4) and 
solving the two equations for x / t  and zit, one can derive 

= ci = 0. 

x = (?%) 
t a d a i  

z 

t 

These define x / t  and z / t  as functions of a,  provided that 

(;)i(g)i 2 0, (;+%) i * 0. 

(5.5) 

The curves of (w/a) i  = 0, (dw/da), = 0 and (w/a+dw/da), = 0 in the complex a- 
plane are shown in figure 3. The condition (5.6) is satisfied in the regions to  the left 
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FIGURE 3. The complex a-plane where w ( a )  is the eigenfrequency. 

0 0.2 0.4 0.6 0.8 1 .o 

FIQURE 4. Contours of x / t  and z / t  in the complex a-plane. 
a, 

of the curve ABC, and to  the right of the curve DE. Solutions to the right of DE, 
however, are spurious solutions, introduced when taking squares of (5.3) to combine 
them into (5.4). As explained in the previous section, this can be seen by comparing 
the solutions of the original equation (5.3) with those of (5.4). Taking again the case 
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FIQURE 5. Contours of a, (solid curves) and ai (broken curves) in the @ / t ,  z/t)-plane. 
X l t  

of z/t = 0 as an example, (3.3) gives a unique solution determined by x/t = dw/da 
and b = 0 (corresponding to the two-dimensional case). When using (5.4), however, 
we find two solutions, one on the curve ABC and the other on the curve DE. The one 
on the curve ABC is the same as that given by (5.3), and hence is the correct solution. 
The solution on DE is a false solution because i t  does not satisfy (5.3), from which 
(5.4) is derived. 

Therefore, for non-zero values of z/t, the saddle points are located in the region to 
the left of the curve ABC. In this region, unique values of (x/t, z / t )  can be calculated 
from (5 .5)  for given a, but the inverse, that is, the evaluation of a for given (x/t, z / t ) ,  
which is our main concern, is not so straightforward. This is because a is a double- 
valued function of x/t + iz/t, which is clearly shown in figure 4. The contours of x/t 
and z / t  given by (5.5) are plotted in the complex a-plane in this figure, which shows 
that at the point marked P ,  the gradient of the quantity x/t+iz/t as a function of 
a vanishes, so that it can be written as 

x/t+iz/t - (x/t)p+i(z/t)p+k(a-ap)2 as a+ap, (5.7) 

where . ( ~ / t ) ~  and ( ~ / t ) ~  are values of (x/t,z/t) a t  a = ap (see also figure 5 ) ,  

(zlt), x 0.82862, (zit), x k0.11570. 

Since the leading-order term involving a in (5.7) is a square, the inverse function 
must have a square root branch point a t  (x/t)p+i(z/t)p. Thus, a branch cut must be 
determined in the complex (x/t, z/t)-plane and the correct Riemann surface needs to 
be chosen for a. 

As discussed in the previous section, this branch cut is actually set by the 
requirement that the chosen branch of a for non-zero z/t must contain its values for 
z / t  = 0, that is, by the principle of analytic continuation that the values of a for the 
three-dimensional problem must be in the same Riemann surface as those for the 
two-dimensional one. The saddle-point trace for the case z / t  = 0 is on the curve ABC 
in figure 3,  which is on the right-hand side of the curve OPQ in figure 4. The curve 
OPQ divides the complex a-plane into two. The region to the right contains the 
corresponding two-dimensional case (a segment of the curve ABC), and hence is the 
correct analytic continuation. Thus only this region is physically relevant and maps 
to the whole complex (x/t, z/t)-plane, which is shown in figure 5.  The branch cut in 
the (x/t, z/t)-plane is, as a result, given by a horizontal line parallel to the (x/t)-axis 
from the point (z/t)p+i(z/t)p to infinity, as displayed, and corresponds to the curve 
PQ (or PO) in figure 4. 
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6. Three-dimensional wave packets 
Having determined the correct branch for a, its values can be found from the 

saddle-point, equation (5.4). The corresponding values of (a, b )  can then be derived 
from (5.3), which once again requires the specification of the correct branch because 
a2 is involved in these equations. In fact, it is sufficient to specify the branch for any 
expression involving a because the asymptotic solution (3.4) can be expressed in 
terms of a and one of such expressions. In  the inviscid case, the wave-packet solution 
assumes the form 

where g is the function of a,  a ,  y instead of a, b ,  y now, the Jacobian determinant J 
is entirely given by a as 

1 x w d2w 1 x dw dw w J =  _ _  _ _ _  -+- _ _ _  
a(t  a ) d a 2  a2(t da)(da a)' (6.2) 

and the complex phase function $ can be written as 

+ = ia(2-E), 

Here the last step follows from the use of (5.4) and the first equation in (5.3), which 
gives a as 

x/t-w/u 

a=,[ dwlda - w / a  I' (6.5) 

To determine $ we can specify eithcr the square root in (6.4) or that in (6.5). In both 
cases, the criterion is the same as that in choosing a, namely, to regard the functions 
as their analytic continuation from the two-dimensional case. If we choose to work 
with (6.5), the square root is chosen to ensure that a +a when z / t  + 0 since when 
z/t = 0, x/t = dw/da and 

x / t  - w / a  
= 1.  

dw/da - w / a  

Thus, we can choose the branch such that the real part of the square root in (6.5) is 
positive, namely, (ala), > 0. This is in fact the condition noticed by Gaster & Davey 
(1968), and corresponds to growing oblique waves. Alternatively, if we work on (6.4), 
the square root in it reduces, in the limit z/t + 0, to x/t -@/a, which has positive 
imaginary parts ( w / u ) ~  in the two-dimensional limit. The branch can be chosen 
according to this, which leads to the condition ($/a), < 0. 

Having determined the branches, the velocity perturbation G(x, y, z ,  t )  is now 
uniquely determined by (6.1) for given (xlt, zit). The instability characteristics of 
this result can be examined through its amplification cont,ours, namely, the contours 
of the real part of the complex phase function $, which wc plot in the complex 
( x / t  + iz/t)-plane in figure 6. The solid curves in this figure denote positive real parts 
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FIGURE 6. Contours of the real part of the phase function @ in the ( x / t ,  z/t)-plane. 

of +, and hence correspond to amplifying waves. The waves occupy a region that is 
almost elliptic except for a concave front edge. Most of the contours in this figure are 
in agreement with those derived by Gaster & Davey (1968) (see their figure 3). 
Although they did require (ala), > 0, corresponding to positive real parts of the 
square root in (6.5), in order to obtain the amplified oblique waves, they mistook the 
curve of a, = 0 for the curve of (ala), = 0 and did not choose the correct Riemann 
surface for a. Owing to this mistake they found a discontinuity a t  the front edge of 
the wave packet. Thus they did not give a complete amplification contour and did 
not describe the wave packet. They conjectured that this discontinuity might be 
caused by the assumption of the inviscid flow and that viscosity might smooth i t  out. 
If this were the case, the wave packet would have a large velocity gradient near the 
forward edge which would still cause breakdown into turbulence to  occur in this 
region first. From the analysis given here, it is clear that  this discontinuity is caused 
by their choice of the branch cuts; when the cuts are correctly chosen, the 
discontinuity is no longer there. Comparing figure 6 here with their figure 3, i t  can 
be seen that the region enclosed by BODB in their figure 3 is a damped region, as they 
predicted. However, for the region in the vicinity of the point Q ,  they chose values 
of a on the left-hand side of the curve OPQ in figure 4 as the saddle points, causing 
the discontinuity in this region. 

To evaluate the result (6 . l ) ,  it  is necessary that the Jacobian determinant (6 .2)  does 
not vanish. In  the region of interest here, this vanishing occurs only a t  the branch 
point P, that is, at (zit), x 0.82862 and (zit), x f0.11570. To demonstrate this, the 
curves of vanishing real and imaginary part are plotted in figure 7 ; a t  their crossing 
point, the Jacobian determinant equals zero. This crossing point can be identified to 
be the point P, because a t  that point d(x/t)/da=O and d(z/t)/da = O ;  and 
substituting into the derivative of (5.4) immediately shows the Jacobian determinant 
to be zero. Thus a t  this branch point, the expansion (6.1) is no longer the leading- 
order term and the Airy integral should be used to  give the proper asymptotic 
expansion. However, it is reasonably to  expect that  the error will not be very 
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FIGURE 7 .  The complex a-plane where the solid curves are contours of x/t .  

significant if (6.1) is used in the neighbourhood of the point P, and the value a t  P is 
then interpolated from these neighbouring points. This is because the point P is on 
the neutral curve; and the error introduced by interpolating is of algebraic order, 
which is negligible in comparison with the exponentially growing terms in the region 
inside the neutral curve. It is plausible to conjecture that similar points will also 
occur in viscous problems, since (4.1) and (5.3) are very similar in form. The point in 
figure 7 where d(w/ol)/da = 0 is marked by C and it can be seen that the Jacobian 
determinant there is not equal to zero, as predicted for the full viscous problem in $4. 

Collecting all the analyses, we can evaluate the characteristic wave packets, given 
by 

Figures 8 and 9 show wave packets at dimensionless times t = 60, 80 and 100, in 
perspective views from both the downstream and the upstream directions. The 
height of the waves is normalized by the maximum of the wave packet a t  each 
different time, in order to show clearly the shape of wave packets. As time increases, 
the original point disturbance develops into a wavetrain which lasts many wave 
periods and whose amplitude grows. 

To check whether the three-dimensional wave packets have been calculated 
correctly, one of them a t  t = 60 is integrated over z and the result is then compared 
with a two-dimensional wave packet for the same time parameter t = 60. The two 
should be equal because 

11;(x,y,i , t)dz = 1's 1 v(y,a,b,&)exp[i(az+bz-&t)]dbdadz 
z Z ( 2 V  a b 

= 6&, y, t), 

where the subscript 2 is used to denote the velocity for the two-dimensional case. The 
last step follows from trivially performing the z integral with the result 2n8(b) which 
is then used to carry out the b integral. This simply means that a point source in the 
two-dimensional flow is a line source in the three-dimensional flow. The linearity of 
the governing equations allows a line source t.0 be decomposed into an infinite 
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FIGURE 8. A perspective view of the three dimensional characteristic wave packet calculated from 
(6.6) at time t = 60, 80 and 100, viewed from behind the waves. 
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FIGLIRE 9. The same wave packet as in figure 8. viewed from ahead of waves. 
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FIGURE 1 1 .  The summation of the three-dimensional wave packet over the z-direction. 
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number of point sources. The result of this comparison is shown in figures 10 and 
figure '1 1, and the obvious similarity between the two demonstrates the accuracy of 
the three-dimensional calculations. 

7. Conclusions 
We have evaluated the three-dimensional disturbance waves by the method of 

stcepest descent. In  doing so, some difficulties associated with the use of the Squire 
transformation have beon discussed. This transformation reduces the original 
equations for the saddle point, namely, the vanishing of the gradient of the complex 
phase function $(a,  b ) ,  to a single equation that links the physical space to  the two- 
dimensional wavenumber a. However, this equation defines the saddle-point value of 
CL as a double-valued function of the complex argument x/t+iz/t. There are two 
sourccs for this non-uniqueness of solutions; the equation is derived by a 
manipulation involving squaring operations and the Squire transformation itself 
contains square-root functions. The spurious solutions introduced by the squaring 
operation can be rejected by substituting them into the original equations, but the 
solution due to  the inherent square-root functions in the Squire transformation needs 
much more careful analysis. The correct branch of this multi-valued function for the 
saddle point can only be selected by resorting to the principle of analytic 
continuation. This is also the basis for the use of the steepest descent method; it is 
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based on the assumption that the integrand of the wavenumber inversions in (3.1) 
can be analytically continued from its original domain of definition, that is, the real 
axes, to the complex wavenumber planes. Applying this principle and considering 
the three-dimensional problem as the analytic continuation of the two-dimensional 
case, the correct Riemann surfaces and branch cuts can be determined. For the wake 
flow examined by Gaster & Pavey (1968), we have pointed out the mistake that they 
made, which resulted in the discontinuity in their amplification contours and led to 
some incorrect conclusions. When the proper choices are made the discontinuity 
disappears and the wave packets can be evaluated. The wave packets have a concave 
forward edge in the mean flow direction. The calculation of the wave packets was 
performed with the aid of the Pad6 approximant method discussed by Jiang (1990). 

The author wishes to thank her supervisor Professor M. Gaster, FRS for his 
continuous guidance and encouragement. She is also grateful to Professor 
A. D. D. Craik for helpful discussions and comments on an early draft of this paper. 
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